Fluorescence fluctuation spectroscopy of mCherry in living cells.

نویسندگان

  • Bin Wu
  • Yan Chen
  • Joachim D Müller
چکیده

The red fluorescent protein mCherry is of considerable interest for fluorescence fluctuation spectroscopy (FFS), because the wide separation in color between mCherry and green fluorescent protein provides excellent conditions for identifying protein interactions inside cells. This two-photon study reveals that mCherry exists in more than a single brightness state. Unbiased analysis of the data needs to account for the presence of multiple states. We introduce a two-state model that successfully describes the brightness and fluctuation amplitude of mCherry. The properties of the two states are characterized by FFS and fluorescence lifetime experiments. No interconversion between the two states was observed over the experimentally probed timescales. The effect of fluorescence resonance energy transfer between enhanced green fluorescent protein (EGFP) and mCherry is incorporated into the two-state model to describe protein hetero-oligomerization. The model is verified by comparing the predicted and measured brightness and fluctuation amplitude of several fusion proteins that contain mCherry and EGFP. In addition, hetero-fluorescence resonance energy transfer between mCherry molecules in different states is detected, but its influence on FFS parameters is small enough to be negligible. Finally, the two-state model is applied to study protein oligomerization in living cells. We demonstrate that the model successfully describes the homodimerization of nuclear receptors. In addition, we resolved a mixture of interacting and noninteracting proteins labeled with EGFP and mCherry. These results provide the foundation for quantitative applications of mCherry in FFS studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pulsed interleaved excitation fluctuation imaging.

Fluorescence fluctuation imaging is a powerful means to investigate dynamics, interactions, and stoichiometry of proteins inside living cells. Pulsed interleaved excitation (PIE) is the method of nanosecond alternating excitation with time-resolved detection and allows accurate, independent, and quasi-simultaneous determination of fluorescence intensities and lifetimes of different fluorophores...

متن کامل

Fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy.

This article focuses on methods based on fluctuation correlation spectroscopy to determine the formation of protein complexes in living cells. We present the principles of the fluctuation method applied to cells. We discuss the novelty and the promises of this approach. The emphasis is in the discussion of the underlying statistical assumptions of the image correlation spectroscopy analysis rat...

متن کامل

Heterospecies partition analysis reveals binding curve and stoichiometry of protein interactions in living cells.

Measuring the binding curve and stoichiometry of protein complexes in living cells is a prerequisite for quantitative modeling of cellular processes. Dual-color fluorescence fluctuation spectroscopy provides a general framework for detecting protein interactions, but lacks suitable methods for quantifying protein heterointeractions in the cell. We address this challenge by introducing heterospe...

متن کامل

Monitoring the caspase cascade in single apoptotic cells using a three-color fluorescent protein substrate.

Fluorescence cross-correlation spectroscopy (FCCS) reveals information about the spatiotemporal coincidence of two spectrally well-defined fluorescent molecules in a small observation area at the level of single-molecule sensitivity. To simultaneously evaluate the activities of caspase-3 and caspase-9, we constructed a chimeral protein that consisted of tandemly fused enhanced cyan fluorescent ...

متن کامل

Brightness analysis by Z-scan fluorescence fluctuation spectroscopy for the study of protein interactions within living cells.

Fluorescence fluctuation spectroscopy (FFS) quantifies interactions of fluorescently labeled proteins inside living cells by brightness analysis. Conventional FFS implicitly requires that the sample thickness exceeds the size of the observation volume. This condition is not always fulfilled when measuring cells. Cytoplasmic sections, especially, can be thinner than the axial size of the observa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 96 6  شماره 

صفحات  -

تاریخ انتشار 2009